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Integrability and action operators in quantum Hamiltonian systems
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For a ~classically! integrable quantum-mechanical system with two degrees of freedom, the functional

dependenceĤ5HQ( Ĵ1 ,Ĵ2) of the Hamiltonian operator on the action operators is analyzed and compared with
the corresponding functional relationshipH(p1 ,q1 ;p2 ,q2)5HC(J1 ,J2) in the classical limit of that system.
The former converges toward the latter in some asymptotic regime associated with the classical limit, but the

convergence is, in general, nonuniform. The existence of the functionĤ5HQ( Ĵ1 ,Ĵ2) in the integrable regime
of a parametric quantum system explains empirical results for the dimensionality of manifolds in parameter
space on which at least two levels are degenerate. The analysis is carried out for an integrable one-parameter
two-spin model. Additional results presented for the~integrable! circular billiard model illuminate the same
conclusions from a different angle.

DOI: 10.1103/PhysRevE.63.056202 PACS number~s!: 05.45.2a, 75.10.Hk, 75.10.Jm
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I. INTRODUCTION

A conspicuous phenomenological discriminant betwe
quantized integrable and nonintegrable parametric Ha
tonian systems with two or more degrees of freedom is
occurrence or prohibition of level crossings between sta
within the same invariant Hilbert subspace of the underly
symmetry group@1–3#. Consider a quantum system who
Hamiltonian depends ond continuous parameters. Suppo
that this model is~classically! integrable if thed parameters
satisfy r relations, which is equivalent to stating that th
model is integrable for parameter values on an integrab
manifold of dimensionalitydI5d2r in d-dimensional pa-
rameter space.

Empirical evidence shows that almost all level crossin
occur at parameter values on the integrability manifold. G
nerically, two levels that are degenerate at one point on
integrability manifold remain degenerate for any variatio
of the d parameters that satisfy ther integrability conditions
plus one condition specific to the two levels in question. T
is equivalent to stating that level degeneracies occur ondI

21)-dimensional level crossing manifolds, which are e
bedded in the integrability manifold.

A recent study@4#, which investigated this issue system
atically, showed for a two-spin model withd56 and dI
55, the level crossing manifolds are, in fact, fou
dimensional, and that they are all confined to the fiv
dimensional integrability manifold. It showed, moreove
that the ~classical! integrability manifold can be recon
structed from the~intrinsically quantum-mechanical! level
crossing manifolds.

A related study@5# of the same model system showed th
the effects of nonintegrability on the energy-level spectr
and on the spectra of other quantum invariants are akin to
effects of a symmetry reduction. Observed energy-level
generacies were attributed to discrete or continuous sym
tries of the quantum model Hamiltonian and to a~possibly
hidden! symmetry associated with the~classical! integrabil-
ity condition.

The focus of the present paper is to illuminate the natu
1063-651X/2001/63~5!/056202~9!/$20.00 63 0562
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cause that gives rise to the signatures of quantum integra
ity described in Ref.@5# and that explains the relationshi
between level crossing manifolds and integrability manifo
established in Ref.@4#. We argue that the natural cause is t
presence of action operators as constituent elements o
Hamiltonian operator for integrable quantum systems.

The textbook solution of an integrable classical dynami
system with two degrees of freedom, specified by an anal
function H(p1 ,q1 ;p2 ,q2) of canonical coordinates, is to
transform the Hamiltonian into a function of two action c
ordinates: H5HC(J1 ,J2). The canonical transformation
(pi ,qi)→(Ji ,u i), i 51,2 to action-angle coordinate
amounts to a solution of the dynamical problem becaus
transforms Hamilton’s equations of motion,ṗi52]H/]qi ,
q̇i5]H/]pi , generically a set of coupled nonlinear differe
tial equations, intoJ̇i50, u̇ i5]HC /]Ji[v i with the solu-
tions Ji5const,u i(t)5v i t1u i

(0) .
This solution is guaranteed whenever a second integra

the motion can be found, i.e., an analytic functio
I (p1 ,q1 ;p2 ,q2), which is functionally independent ofH and
has a vanishing Poisson bracket withH:dI/dt5$H,I %50.
Deriving the expressionsHC(J1 ,J2) and I C(J1 ,J2) from H
and I requires the use of separable canonical coordina
Finding separable coordinates can be a difficult task eve
the second invariant is known.

The functionsHC(J1 ,J2) and I C(J1 ,J2) establish a piv-
otal link between an integrable classical system and a qu
tized version of it. Semiclassical quantization derives its r
son d’être from the obvious fact that quantizing a function
relation is much less problematic if it involves only quan
ties such asH, I, J1 , andJ2 whose quantum counterparts a
guaranteed to be commuting operators.

II. QUANTUM VERSUS QUANTIZED

In the context of this paper, it is useful to distinguish thr
renditions of a given model system:~i! thequantumversion,
~ii ! theclassicalversion, and~iii ! the ~semiclassically! quan-
tizedversion.

The ~primary! quantum model is specified by the Ham
©2001 The American Physical Society02-1
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tonian expressed as an operator valued function of a se
dynamical variables~position, momentum, spin, . . . !. The
commutation relations of these operators and the metri
the associated Hilbert space along with the rules of quan
mechanics then determine, via the Heisenberg equatio
motion, the time evolution of any observable quantity
interest.

The classical limit converts the Hamiltonian operator in
the classical energy function, the commutator algebra of
namical variables into the sympletic structure~the fundamen-
tal Poisson brackets!, and the Heisenberg equation of motio
for any operator into the Hamilton equation of motion for t
corresponding classical quantity. These quantities, in tu
enable us to express the energy function as a classical Ha
tonian, i.e., as a function of canonical coordinates.

The quantization of a classical Hamiltonian system
quires a prescription for translating the functional relatio
between classical dynamical variables into functional re
tions between corresponding operators. Semiclassical q
tization is one neat and clean procedure applicable to
integrable classical systems. It borrows from classical m
chanics the functional dependenceĤ5HC( Ĵ1 ,Ĵ2), of the
Hamiltonian on the action operators and postulates that
eigenvalue spectrum of the latter consists of equidistant
els spaced by\ @6#.

^Ĵi&5\S ni1
1

4
a i D , i 51,2 ~1!

with integerni . The ~integer! Maslov indicesa i are deter-
mined by the topology of the classical trajectories in ph
space @7#. Semiclassical quantization thus makes spec
predictions for the energy-level spectrum of the quantiz
version of the model system at hand@8#.

It is a well-known fact that the~semiclassically! quantized
energy-level spectrum and the~primary! quantum energy-
level spectrum do not coincide. The latter implies the ex
tence of a functionHQ( Ĵ1 ,Ĵ2) with properties that differ
significantly from those of the functionHC( Ĵ1 ,Ĵ2). The op-
erator valued functionHQ , including its dependence on a s
of Hamiltonian parameters that can be varied continuou
across some integrability manifold of the underlying mod
is a distinctive feature of quantum integrability.

The properties ofHQ( Ĵ1 ,Ĵ2) in relation to those of the
semiclassical functionHC( Ĵ1 ,Ĵ2), will be investigated in
Sec. III for an integrable two-spin model and in Sec. IV f
the ~integrable! circular billiard model.

III. TWO-SPIN MODEL

We consider two quantum spinsŜ1 ,Ŝ2 of equal length
As(s11) (s5 1

2 ,1,32 , . . . ) interacting via a uniaxially sym-
metric exchange interaction@9#:

Ĥ52~Ŝ1
xŜ2

x1Ŝ1
yŜ2

y!2kŜ1
zŜ2

z . ~2!

The second integral of the motion, which follows from N
ether’s theorem, is
05620
of

of
m
of
f

y-

n,
il-

-
s
-
n-
ll
-

e
v-

e
c
d

-

ly
l,

Î 5M̂z5
1

2
~Ŝ1

z1Ŝ2
z!. ~3!

In the classical limit\→0, s→`, and\As(s11)5s, the
operators Ŝi turn into three-component vectorsSi
5s(sinqi coswi , sinqi sinwi , cosqi), and Eq.~2! then de-
scribes the energy function of an autonomous Hamilton
system with two degrees of freedom and canonical coo
natespi5s cosqi , qi5w i , and i 51,2 @10#.

A. Classical actions

Generically, the classical time evolution of this system
nonlinear and quasiperiodic. In the parameter range 0,k
,1, the following relation between the integrals of the m
tion H5E ~energy!, I 5Mz ~magnetization!, and a set of
classical actionsJ1 ,J2 can be inferred from the exact solu
tion @11#:

J152Mz , J25
1

2p E
0

t

dt
zż

11z2 ,

z~ t ![
1

2
s~cosq12cosq2!5z0 sn~rt,z0 /a!,

z~ t ![tan~w12w2!5
rz0 cn~rt,z0 /a! dln~rt,z0 /a!

E1k@Mz
22z0

2 sn2~rt,z0 /a!#
,

~4!
z0

25zm
2 2Azm

4 2c, a25zm
2 1Azm

4 2c,

c5@~s22Mz
2!22~E1kMz

2!2#/~12k2!,

zm
2 5Mz

21
s22kE

12k2 , t5
4

r
KS z0

a D , r5A12k2a,

where sn(p,x), cn(p,x), dn(p,x) are Jacobian elliptic func-
tions andK(p) is a complete elliptic integral@12#.

For the casek51 with higher rotational symmetry, con
siderable simplifications occur in the classical time evo
tion. Both spins precess uniformly about the direction of t
conserved vectorST[S11S2 , and the precession rate isv
5uSTu for both spins. Equations~4! for the classical actions
become

J152Mz , ~5a!

J25
4

p E
0

p/2a

dtFz22
z2s21Mz

22z2

~11z2!~E1Mz
22z2!G , ~5b!

z~ t !5z0 sinat, z~ t !5
az0 cosat

E1Mz
22z0

2 sin2at
,

z0
25

1

2
~s21E!F12

4Mz
2

a2 G , a5A2~s22E!,

and can be evaluated in the closed form

J152Mz , ~6a!
2-2
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INTEGRABILITY AND ACTION OPERATORS IN . . . PHYSICAL REVIEW E63 056202
J252A2~s22E!1~s2Mz!sgn~s22E22sMz!

1~s1Mz!sgn~s22E12sMz!. ~6b!

Inverting relations~6! yields a degree-two polynomial de
pendence ofE, Mz on J1 ,J2 :

I C~J1 ,J2!5Mz5
1

2
J1 , ~7a!

HC~J1 ,J2!5E5s22
1

2
l c
2, ~7b!

where l c5J22uJ1u if suJ1u.s22E and l c52s2J2 , if
suJ1u,s22E.

B. Quantum actions

For the casek51, the exact quantum spectrum follow
directly from the higher rotational symmetry ofĤ:

^Ĥ&Q5\2s~s11!2
\2

2
l ~ l 11!, ^M̂ z&Q5

\

2
m, ~8!

where l 50,1, . . . ,2s is the quantum number of the tota
spin andm52 l ,2 l 11, . . . ,1 l that of its z component.
One set of quantum actions~1! has eigenvalues@13#

^Ĵi&/\[Ji
Q52s,2s11, . . . ,1s, ~9!

which are related tol, m as follows:

J1
Q5s2 l , J2

Q5s2 l 2m ~m<0!, ~10a!

J1
Q5s2 l 1m, J2

Q5s2 l ~m>0!. ~10b!

The two quantum invariants expressed as explicit functi
of action operators then read

HQ~ Ĵ1 ,Ĵ2!5Ĥ5
1

2
\2s~s11!1

1

2
min~ Ĵ1 ,Ĵ2!

3@\~2s11!2min~ Ĵ1 ,Ĵ2!#, ~11a!

I Q~ Ĵ1 ,Ĵ2!5M̂ z5
1

2
~ Ĵ12 Ĵ2!, ~11b!

where min(Ĵ1,Ĵ2) selects the action operator with the smal
eigenvalue.

While the functional dependence in Eq.~11! is again de-
scribed by a degree-two polynomial, it is different from t
functional dependence~7! found classically. The former can
not be reconciled with the latter by any canonical transf
mation, nor does the quantum spectrum converge unifor
toward the classical spectrum fors→`, as we shall see in
Sec. III C 1.

For the cases 0<k,1 we must calculate the (2s11)2

eigenvalues of the two quantum invariantsĤ,M̂z by numeri-
cal diagonalization ofĤ in the 4s11 invariant subspaces o
05620
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M̂z . From the numerical data for̂Ĥ&, ^M̂ z&, we can infer
the correct assignment of action quantum numbers^Ĵi&/\ to
eigenstates by smoothly connecting the spectrum in par
eter space to the known relations~11! for k51. The resulting
data forHQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) can then be compared wit
the ~semiclassically quantized! inverse classical relations~4!,
HC( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2), to high precision albeit not analyti
cally as in the casek51. Numerical results will be presente
in Sec. III C 2.

C. Quantum corrections to quantized actions

In some simple applications, the functionsHQ ,I Q are
identical to the functionsHC ,I C . Hence there are no suc
quantum corrections. If we take, for example, the two-s
model Ĥ52Ŝ1

zŜ2
z , then both classical invariantsE, Mz de-

pend solely on the canonical momenta, and the latter
identified to be actions:pi5Ji . Hence we haveE5
2J1J2 , Mz5(1/2)(J11J2), which, upon semiclassica
quantization witĥ Ĵi&/\52s, 2s11, . . . ,1s, yields the
exact quantum eigenvalue spectrum. This situation is exc
tional. For all cases of Eq.~2! with 0<k<1, quantum cor-
rections do exist.

1. Analytic results forkÄ1

For the parameter settingk51, the functionsHQ( Ĵ1 ,Ĵ2),
I Q( Ĵ1 ,Ĵ2), as given by expressions~11!, are to be compared
to the semiclassical expressionsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2) in-
ferred from the classical relations~7! with quantum actions
~9!. It turns out to be more practical to perform the compa
son for the inverse functional relations. We substitutes(s
11) for s2 and the exact eigenvalues~8! for E, Mz into the
classical expressions~6!. The result is a set of nonintege
valued semiclassical action quantum numbers

J1
C5m, ~12a!

J2
C5H 0 m5 l 50

2As~s11!2Al ~ l 11! umu,m0

umu2Al ~ l 11! umu.m0 ,

~12b!

wherem05 l ( l 11)/2As(s11). An optimal match with the
quantum actions~10! can be achieved if we subject Eq.~12!
to two successive canonical transformations:

j 1
C85 j 1

C ,

J2
C85H 2As~s11!2uJ1

Cu1J2
C J2

C<0

J2
C J2

C.0,

J1
C95H J2

C822As~s11!1s1
1

2
J1

C8<0

J2
C822As~s11!1s1J1

C81
1

2
J1

C8.0
2-3
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J2
C95H J2

C822As~s11!1s1
1

2
2J1

C8 J1
C8<0

J2
C822As~s11!1s1

1

2
J1

C8.0.

We thus arrive at the expressions

J1
C955

s1
1

2
m5 l 50

s2Al ~ l 11!1
1

2
m<0

s2Al ~ l 11!1
1

2
1m m.0,

~13a!

J2
C955

s1
1

2
m5 l 50

s2Al ~ l 11!2m1
1

2
m<0

s2Al ~ l 11!1
1

2
m.0.

~13b!

The deviations of the noninteger valuedJ1
C9 , J2

C9 from the
integer valuedJ1

Q , J2
Q then describe the quantum correctio

to the semiclassical actions.
Using Al ( l 11)2 1

2 5 l 1O( l 21), we see at once that th
genuinely quantum-mechanical relations~10! and the semi-
classical relations~13! are asymptotically equivalent at low
energies~large l! for s→`. At high energies~small l!, on
the other hand, the two relations remain distinct no ma
how large we choose the value of the spin quantum num
s.

To set the stage for the cases 0,k,1, we plot in Figs.
1~a! and 2~a! the eigenvalues ofĤ versus those ofM̂z in
representations with spin quantum numberss52 and s
54, respectively. The patterns of regularity and similarity
the arrays of points are a direct consequence of the sm
functional relations HQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2). The map
(^Ĥ&,^M̂ z&)→(J1

Q ,J2
Q) from the plane of invariants to th

action plane is provided by Eqs.~10! and produces the tri
angles in Figs. 1~b! and 2~b!. These points form a perfec
lattice with unit spacing.

If we use instead the map~13! provided by semiclassica
quantization, we obtain the array of open circles in Fig. 1~b!
and Fig. 2~b!. The bonds shown in parts~a! and ~b! of the
two graphs correspond to each other. The distortion in
lattice of circles relative to the perfect lattice of triangles is
graphical representation of the quantum corrections in
functionsHQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) relative to the semiclassica
functionsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2). It visually confirms what
we have already concluded from comparing Eqs.~10! and
~13!, namely, that the deviations die out at low energ
~lower left area! but persist at high energies~upper right
05620
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area! for s→`. A useful measure of the leading quantu
correction to the semiclassical relationHC( Ĵ1 ,Ĵ2) is the
quantitysDJ, where

DJ[A~DJ1!21~DJ2!2, DJi[Ji
Q2Ji

C9 ~14!

represents the distance between the triangles and circle
corresponding array sites in Figs. 1~b! and 2~b!. From Eqs.
~10! and ~13! we obtain

DJ5H 1/& l 50

&S l 2
1

2
2Al ~ l 11! D lÞ0.

~15!

The dependence ofsDJ on J1
Q , J2

Q thus represents the
1/s quantum correction to the semiclassically quantized
tions. It has an inverse first power divergence in one cor
of the action plane for energy levels at the upper threshold
the spectrum:sDJ;@4&( l /s)#21. For states withl /s!1
the leading quantum correction is ofO(1). In this part of the
spectrum, semiclassical quantization remains inadequat
matter how large we choose the spin quantum numbers.

FIG. 1. ~a! Eigenvalue^Ĥ& ~energy! versus eigenvaluêM̂ z&
~magnetization! as given in Eqs.~8! of all eigenstates of Hamil-
tonian ~2! with k51, s52. ~b! The full triangles are the quantum
images (J1

Q ,J2
Q) of these eigenstates in the action plane as provi

by Eqs. ~10!. The open circles are the semiclassical imag

(J1
C9 ,J2

C9) as provided by Eqs.~13! with s25s(s11).
2-4



la
ns

n

v
a

t
lit

am
d

s
e

a
a

f

g

ef

dis-

as

ints

of

f
n

-

-

in n
-

-

INTEGRABILITY AND ACTION OPERATORS IN . . . PHYSICAL REVIEW E63 056202
The state with the largest quantum correction to semic
sical quantization is the singlet combination of the two spi
This state or any nearby state in the action plane have
proper semiclassical representation.

2. Numerical results for 0ËkË1

Here we use the same graphical representation e
though we must rely on the results of a numerical diagon
ization for the energy eigenvalues. Atk,1 we observe tha
certain features of the quantum invariants change qua
tively because the rotational symmetry ofĤ has been re-
duced, whereas other features remain qualitatively the s
because the integrability of the model has not been
stroyed.

In Figs. 3~a! and 4~a! we have plotted the eigenvalue

^Ĥ&, ^M̂z& of the two quantum invariants versus each oth
at k50.1 for s52 ands54, respectively. Again the dat
points display regular patterns. They evolve from the p
terns shown in Figs. 1~a! and 2~a! by smooth deformation o
the lines of bonds as the value ofk is lowered gradually. The
lower symmetry removes the level degeneracies pertainin
the strings of horizontal bonds in Figs. 1~a! and 2~a!. Note
that level crossings are a natural consequence of the d
mation process anywhere in the parameter range 0<k<1.

When we substitute the eigenvalues^Ĥ& and ^M̂z& from
the numerical diagonalization into the exact expression~4!

FIG. 2. Plot of the same quantities as in Fig. 1 but for sp
quantum numbers54.
05620
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for the classical actions and subject the resulting set of

crete valuesJi
C to the transformationsJi

C→Ji
C8→Ji

C9 , we
obtain arrays of points in the form of distorted lattices
illustrated by the open circles in Figs. 3~b! and 4~b! for the
two examples at hand. The deviations of these data po
from the sites of a perfect lattice~marked by triangles! then
again represent the quantum corrections to the~semiclassi-
cally! quantized actions. The patterns in Figs. 3~b! and 4~b!
are also connected to those in Figs. 1~b! and 2~b! by smooth
deformation of the lines of bonds upon gradual variation
the parameterk.

A closer look at the 1/s quantum correction is afforded i
we plot the scaled distancesDJ versus the scaled actio
quantum numbersJ1

Q/s and J2
Q/s for a system with many

more levels (s540). A contour plot of the resulting land
scape is shown in Fig. 5. Convergence ofsDJ toward a
smooth function ofJ1

Q/s, J2
Q/s is almost uniform. In the

casek50.1 considered here, there are two points~as op-
posed to a single corner point atk51!, where the 1/s cor-
rection diverges. The data pointssDJ closest to these loca
tions again tend to grow}s.

FIG. 3. ~a! Eigenvalue^Ĥ& ~energy! versus eigenvaluêM̂ z&
~magnetization! of the (2s11)2525 eigenstates of the two-spi
model ~2! with k50.1 for s52. Data from a numerical diagonal

ization. ~b! The full triangles are the eigenvaluesJi
Q5^Ĵi&/\ of the

action operators, the images of the inverted functionsHQ( Ĵ1 ,Ĵ2),

I Q( Ĵ1 ,Ĵ2). The open circles are the semiclassical images (J1
C9 ,J2

C9)
from Eqs.~4! with s25s(s11), the images of the inverted func

tions HC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2).
2-5
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The two sharply peaked maxima in the landscape of F
5 will merge into a single divergence ass→`. At this point
in the action plane, the leading quantum correction to se
classical quantization is again ofO(1). Its location in the
action plane does, however, no longer coincides with an
tremum in the energy-level spectrum. The divergence
sDJ occurs at energyE5ks2 ~for s→`!, where the clas-

FIG. 4. Plot of the same quantities as in Fig. 3 but for sp
quantum numbers54.

FIG. 5. Scaled distancesDJ for s540, k50.1 between the

images of the inverted functionsHQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2), and the

images of the inverted functionsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2).
05620
.
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sical equations of motion have a fixed point. For eigensta
with action quantum numbers in the vicinity of this poin
quantum effects persist no matter how larges is made.

One point in the action plane wheresDJ diverges, exists
throughout the regime 0<k,1. With k increasing from
zero, the singularity moves gradually toward one corner
the action plane, and the energy of the state pertaining
those action coordinates moves toward the upper thres
of the spectrum. This trend is indicated in Fig. 6, whi
shows the 1/s landscape fork50.5. The endpoint of this
gradual shift, the casek51, was described in Sec. III C 1.

The asymptotic landscape fors→`, to which the graphs
in Figs. 5 and 6 converge almost everywhere, can now
used as the reference frame for the higher-order quan
corrections. The deviations of the data points from this n
reference, appropriately scaled, will produce another la
scape, representing the 1/s2 correction to the semiclassicall
quantized actions@14#.

We consider the lineJ2
Q5J1

Q2s/2 for this purpose. In the
main plot of Fig. 7 we show the 1/s correctionssDJ along
this line for s54,8,16,32. Also shown are data fors
51600, which are very close to the asymptotic values for
1/s correction and now serve as the reference line for
1/s2 corrections.

In the inset to Fig. 7 we have plotted the scaled deviatio
of the s54,8,16,32 data from the new reference line. T
results suggest that these data again converge toward a
which will then be the reference line for 1/s3 corrections.
Like the reference line in the main plot of~a! @~b!#, which is
embedded in the landscape Fig. 5@Fig. 6#, the new reference
line will be embedded in a landscape representing the 1s2

quantum corrections to semiclassical quantization over
entire action plane.

The point to be emphasized here is not so much the e
shape of the landscapes that represent successive orde
quantum corrections to the semiclassically quantized actio
nor even that such corrections exist, and that the leading t
may be ofO(1) at special points rather than ofO(s21) as

FIG. 6. Scaled distancesDJ for s540, k50.5 between the

images of the inverted functionsHQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) and the

images of the inverted functionsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2).
2-6
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might be expected. Most important is that these results d
onstrate the existence of the discrete functionHQ( Ĵ1 ,Ĵ2)
with a continuous dependence on the Hamiltonian param
k that produces level crossings quite naturally.

IV. CIRCULAR BILLIARD

In the second application we consider a particle of masm
that is free to move two dimensionally across a circular a
of radius R. The classical Hamiltonian expressed in po
canonical coordinates reads

H~pr ,r ;pq ,q!5
pr

2

2m
1

pq
2

2mr2 1V~r !, ~16!

whereV(r ) is a hard-wall potential that confines the partic
to r<R.

In a recent study, Ree and Reichl@15# analyzed this sys-
tem classically and quantum mechanically as an integra
limiting case of the circular billiard with a straight cut. I
general, the cut renders the classical time evolution cha

FIG. 7. Dependence of the scaled distancesDJ for ~a! k
50.1, ~b! k50.5 between the images of the inverted functio

HQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) and the images of the inverted function

HC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2). Shown are data fors54 ~squares!, s58
~circles!, s516 ~triangles!, s532 ~pentagons!, ands51600~solid
line!. Inset: Scaled deviations@sDJref2sDJs# of the s
54,6,8,16 data from the reference line~s51600 data!.
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Other integrable and nonintegrable variations of the quan
billiard problem have been discussed elsewhere in the re
literature@16,17#.

Here we use some results of Ref.@15# to investigate the
functional dependence of the circular billiard Hamiltonian
the actions quantum mechanically and semiclassically
comparison with the two-spin results presented previous

Integrability of the circular billiard model is guarantee
by the conservation of angular momentumL5pq . The ca-
nonical transformation to action-angle coordinates produ
the following relations between the integrals of the motionE,
L and the two-action variables:

J15L, ~17a!

J25
A2mE

p FAR22x22x arccosS x

RD G , ~17b!

wherex5AL2/2mE. The eigenfunctions of the circular bil
liard, i.e., the solutions of

S ]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]q2 1k2DC~r ,q!50 ~18!

with k252mE/\2 and Dirichlet boundary conditions ar
known. The exact expressions for the two quantum inva
antsĤ ~energy! and L̂ ~angular momentum! are

^Ĥ&5
\2a lk

2

2mR2 , ^L̂&56 l\, ~19!

wherel 50, 1, 2, . . . anda lk is thekth zero (k51,2, . . . ) of
the Bessel functionJl(x).

One major distinction between the circular billiard mod
and the two-spin model is that all invariant Hilbert subspa
are infinite dimensional in the former and finite-dimension
in the latter. The energy has no upper bound in the circu
billiard and the angular momentum has neither upper
lower bound.

FIG. 8. EigenvaluêĤ& ~energy! versus eigenvaluêL̂& ~angular
momentum! as given in Eq.~19! of the eigenstates near the botto
of the spectrum of the circular billiard model.
2-7
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In Fig. 8 we have plotted the eigenvalues^Ĥ& versuŝ L̂&
of the two quantum invariants near the bottom of the le
spectrum. As in the two-spin model, the regular pattern
points is a signature of quantum integrability. In both mod
the points tend to become displaced irregularly when non
tegrable perturbations are introduced@11,15#.

The integersk,l in Eq. ~19! can be identified as the eigen
values~in units of \! of a set of quantum actions:

^ Ĵ1&5\ l , ^Ĵ2&5\S k2
1

4D . ~20!

The shift in the second expression is dictated by a Mas
index a151 ~see Sec. II! @7#. The results of Eq.~19! com-
bined with Eq.~20! thus define specific functional relation
HQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) between quantum invariants an
quantum actions. They are to be compared with the fu
tional relationsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2) as defined by Eq.~17!
combined with Eq.~20!.

For a graphical representation of the quantum correcti
to semiclassical quantization, we proceed as in Sec. III
Fig. 9 we plotDJ2[uJ2

Q2J2
Cu versusk and l, whereJ2

Q5k
21/4 andJ2

C is the value of Eq.~17b! when the exact eigen
values~19! for the quantum invariants are substituted in
the expression.

We observe a landscape in the form of a sloped rid
centered atl 50. The largest quantum correction to semicla
sical quantization pertains to the ground state~with k51, l
50!. The plot suggests that the quantum corrections die
for large k. This is confirmed by substitution of th
asymptotic expression fork@ l @12#,

a lk;b2
4l 2

8b
1O~b23!, b5k1

l

2
2

1

4
, ~21!

FIG. 9. Quantum corrections to the semiclassical prediction
the energy eigenvalues of the circular billiard model. Plotted is
deviationDJ25uJ2

Q2J2
Cu, whereJ2

Q5k21/4 andJ2
C5J2 /\ as de-

termined by Eq.~17b! with E5^Ĥ&, L5^L̂& substituted from
Eq. ~19!.
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into Eq. ~19! for use in Eq.~17b!:

J2~ l ,k!;\Fk2
1

4
1

1

8p2k
1O~k22!G , k@ l . ~22!

The quantum corrections also decrease with increasingulu at
fixed k, but not all the way to zero. To demonstrate this f
k51, we use the asymptotic expression forl @k51 @12#,

a l1;u l u1C1u l u1/31C2u l u21/3 ~23!

with C1.1.8558 andC2.1.033 for use in Eq.~19!. When
substituted into Eq.~17b! we obtain the asymptotic value

J2~ l ,1!5~\/3p!~2C1!3/21O~ u l u22/3!, ~24!

which deviates from the reference value\(12 1
4 ) by roughly

1%. The conclusion is that the semiclassical regime of
circular billiard is restricted to states withk@ l . It does not
include, for example, any states along the lowest branchk
51) shown in Fig. 9, no matter how large the energy of t
state becomes with increasingulu.

V. CONCLUSION

In this paper we have investigated a key signature
quantum integrability in systems with two degrees of fre
dom, namely, the functional dependence of the Hamilton
Ĥ and the second integral of the motionÎ on two action
operatorsĴ1 , Ĵ2 .

The results presented in Secs. III and IV for the~semi-
classically! quantized and the~primary! quantum energy-
level spectra of two integrable model systems suggest
following interpretation, which is consistent with the concl
sions inferred from an entirely different line of reasonin
@18#: ~i! Quantum integrability implies that the Hamiltonia
can be expressed as an operator valued function of the
tions: Ĥ5HQ( Ĵ1 ,Ĵ2), where the eigenvalue spectrum of th
action operators is of the form~1!. ~ii ! This function is dif-
ferent from the functionHC( Ĵ1 ,Ĵ2) inferred via semiclassi-
cal quantization from the solution of the classical dynami
problem.~iii ! In some asymptotic regime associated with t
classical limit the functionHQ( Ĵ1 ,Ĵ2) converges, if properly
scaled, toward the functionHC( Ĵ1 ,Ĵ2), but the convergence
need not be uniform.~iv! For the second integral of the mo
tion, which ~classically! guarantees integrability, ther
exist functions I Q( Ĵ1 ,Ĵ2) and I C( Ĵ1 ,Ĵ2) with analogous
properties.

The existence of action operators as constituent elem
of all quantum invariants in integrable model systems is
key property necessary to explain the dimensionality of le
crossing manifolds relative to the dimensionality of integ
bility manifolds in the parameter space of model syste
with parametric integrability conditions. On th
dI-dimensional integrability manifold in the parameter spa
of a given model system, both functionsHQ( Ĵ1 ,Ĵ2) and
I Q( Ĵ1 ,Ĵ2) will then depend continuously on these para
eters. The quantum eigenvalue spectrum on the integrab

r
e
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manifold is determined bŷĤ&Q5HQ(^Ĵ1&,^Ĵ2&) and can be
interpreted as a set of continuous functions of the Ham
tonian parameters subject to the constraints imposed by
integrability condition. The level crossings, which occur
the intersections of the graphs of any two members from
set of functions, are then naturally confined
(dI21)-dimensional manifolds and are naturally embedd
in the integrability manifold, in agreement with empiric
evidence@4#.

For parameter values away from the integrability ma
fold, no smooth functionHC(J1 ,J2) exists anymore becaus
action values exist only for the surviving invariant to
which are no longer dense anywhere in phase space. L
wise, the observed prohibition of level crossings in the n
integrable parameter regime makes it impossible to con
tently extend the functionHQ( Ĵ1 ,Ĵ2) beyond the integrable
cs

si-

an

re
Y
. A

d

05620
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regime. The eigenvalues of the two action operators, wh
are the natural quantum numbers of the eigenstates in
integrable regime, must be replaced here by a single qu
tum number representing the fixed level sequence within
invariant Hilbert subspace. Clear-cut evidence for two d
tinct parameter regimes pertaining to the action quant
numbers~integrable regime! and to the energy-sorting quan
tum number ~nonintegrable regime! was presented in
Ref. @5#.
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